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LETTER TO THE EDITOR 

Possible shear instabilities for colloidal structures in a solvent 
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BP 166 X, 38042 Grenoble Cedex, France 

Received 30 March 1987 

Abstract. A colloidal aggregate in a moving fluid may suffer an instability of the plug-flow 
type for a large enough shear. The resulting non-uniform structure should be allowed for 
in shear-melting models. 

Plug flow in suspensions is an experimentally well documented effect (see, e.g., [l])  
and has recently been re-approached on the theoretical side [2,3]. In Poiseuille flow, 
for example, above some threshold in the pressure head, that is in the shear, a flat 
segment will show up in the velocity profile around the axis of the tube and the 
suspended particles will tend to gather in that region. This is a typical two-parameter 
instability: local particle density, affecting the viscosity, and local shear strain, which 
results in a ‘lift force’ [2] related to the shear gradient. 

Here, we address a related problem which we cast in formally similar terms. We 
consider shear flows-Couette between parallel plates to be specific-but, instead of 
a suspension, the solute is a colloidal structure now, say of the branched type. 

Such a structure exhibits some elasticity, extending to finite lengths [3]. Imagine 
the colloid to be reticulated onto a cubic lattice (figure 1 provides a coarse-grained 
version of the orientational map). Without flow, the proportion p of links lying 
perpendicular to the plates, along Ox, is p o  = f . Under shear flow, this probability will 
decrease, whereas the probability of finding a link along Oz, the direction of flow, 
increases above 4 (the problem is in fact two dimensional since the links / /  Oy are not 
affected). This provides us with a natural definition of elastic strain at level x (of 
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Figure 1. Schematic profile of the sheared structure above threshold. The arrow shows 
the direction of flow. The ‘density’ p ( x )  decreases as one goes from the central symmetry 
plane (chain line) to the plate walls. 
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course, we take x = 0 on the symmetry plane (statistical symmetry) between plates): 

is the shear stress (7( p )  is the local viscosity, now depending on p ( x ) ,  y = au/ax ,  u ( x )  
is the velocity of flow along Oz). We assume that the flow stress is entirely transferred 
to the colloid, where 

is an elastic response factor, the expression of which (3) is due to Kantor and Witten 
[3]. The parameter notation is as in [3]: b, atomic size; a, colloidal particle size; d, 
space dimension (here three); D,, scaling power (typically 1.5); n,  - ( a / b ) d ,  number 
of atoms per particle; K, shear modulus of a single particle; a (  = O . l ) ,  interparticle 
bonding efficiency. L is the length scale over which we probe the elasticity of the 
structure: here, it should be larger than the distance between plates. 

In  our problem, the local probability p ( x )  plays the role of local concentration in 
the sheared-suspension problem. Following [2], we expect that, above some shear-flow 
threshold y,, the system will separate in a central region-the ‘plug’: low y,  large 
p-and two symmetric regions next to the plates, where y is large and p low, i.e. where 
the rigidity of the structure is overcome by the flow and few bonds are left along Ox 
(see figure 1). To check this prediction, let us now turn to the equations of motion. 
The equation for flow is trivial: 

where q ’ =  av/ap (>O). The equation for the dynamical variable p ( x )  is more interest- 
ing. p is made up of three terms. Just as in Nozigres and Quemada [2], there is a 
chemical potential term and a lift term, here corresponding to the ‘orientation current’ 
J along Ox: 

The chemical potential p ( x )  = 5 p ‘  dp expresses an elastic reaction? of the colloidal 
structure and, as such, is related to the rigidity A-’ ;  aO ( # a ! )  is a ‘mobility’ and rlift 
is a force (the gradient of an energy varying as y’; physically, cyo is related to an 
orientational mobility of each bond lying in the flow and rliFt correspondingly relates 
to a torque). The origin and sign of p are discussed in detail in [2]. In  our problem, 
/3 should be positive in general due to entropy-controlled clustering contributions 
[4,5]. As in [2], we assume cyO and p to be independent of p but, in contrast to the 
suspension problem, the density p is of course not conserved, and p contains a third 
term, a structural rigidify term, obtained from (1). So we write 

dJ  
POA(7?+ 7 ’ Y I j )  p = -poAb  - - = - 

ax 

+ I am indebted to a referee who pointed out the need for such a term in an early report on this letter. 
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We now carry out a linear stability analysis (i.e. discuss the compatibility of (4) and 
(6)),  whereby higher powers of fluctuations drop out. Taking small fluctuations to be 
of the form [i(qx - w t ) ]  and putting y = iw ( > O ) ,  the compatibility condition is 

Y 2 [ P ( l  + P o ~ 7 7 ‘ Y o ~ l - y ~ 4 2 ~ 7 7 + ~ ~ o l L ’ P o ~ l + 4 4 ~ o P o ~ r l l L ’ -  Y;T” = o .  ( 7 )  

Two limiting cases are readily distinguished. 

in when the average shear yo exceeds a threshold given by 
( a )  Rigid aggregate. The deformability A is small or moderate. An instability sets 

independent of A. This critical shear is identical in form to that found in [2]. The 
distorted structure will look qualitatively as shown in figure 1. As usual in plug flow, 
the flow impedance will suddenly decrease above threshold. 

( b )  Soft deformable aggregate. A is large (of course, if A is too large, the elasticity 
theory of [3] breaks down). An instability of a different type appears above some- 
relatively low-threshold given, to first order, by 

(9) 
(7 - PaoP”Po)2 1 
4PaolL’Pi77’77 A‘  

Y:= 

The eigenfrequencies are now complex and  can be related to some kind of assisted 
wavy Taylor instability. In a very recent experiment on colloidal crystals [6], compar- 
able features have been demonstrated. 

In this letter, we have introduced a number of simplifying assumptions, some of 
which may turn out to have a rather limited range of validity. For instance, we have 
not considered the possible excluded-volume effects in the sheared ‘phase’ close to 
the wall. Also, we have not attempted to discuss the distorted regime above threshold 
and, in particular, the positioning of the ‘Maxwell plateau’ [ 2 ]  associated with the 
instability, nor the extension of the model to multiconnected ‘percolating’ structures 
[ 5 ] .  Nevertheless, our considerations might be related to a few problems of practical 
interest in large-scale hydrology, rheology, industrial flows and perhaps even in biology. 
In view of the broad range of variation open to the different parameters (see, e.g., (9)) ,  
it seems pointless to give numerical applications here. 

Our main conclusion is that, when addressing problems such as shear-induced 
instabilities or melting, one should allow for non-uniform, domain-like, configurations 
such as found, for example, in plug flow. 
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